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The coiitinuuin, inviscid-flow equations of gas dynamics arc used to predict the‘idect of 
radiation on the internal structure of a shock wave. Numerical solutions of the governing equations 
show that considerable variation in the nature of the temperature and velocity profiles occurs, de- 4 4 ~ 4  RP-zy) 

,/ pending on the magnitude of the over-all velocity change and the relative strengths of the radiative 
and convective energy fluxes. A unique feature of the work is the demonstration that, for a range 

desults include: (a) numerical integration of the basic equations for a representative range of param- 
btere; (b) an analytic study of the equations by means of expansion procedures; (c) n study of the 

,, applicable since they :ne restricted to continuous solutions; (e) prediction within a strong shock of a 
temperature maximum considerably larger than that corresponding to the Rankine-Hugoniot 
conditions. 

‘ 

- 
\of pnramctric valucs, discontinuitics ncccssarily arise in the ternperalure and velocity profiles. The c 3 ~ i  

/uniqueness of the solutions; (d) proof that previously published investigations cannot be generally h+d , 

\- 

INTRODUCTION 

111s paper is concerned with the prediction of T shock wave structure as influenced by one mode 
. of energy dissipation. The continuum equations 

of one-dimensional gas dynamics, including energy - transport by thermal radiation, are solved and the 
nature of the temperature and velocity profiles 
within shock waves is shown to have a strong 
dependence on two basic parameters. The work is a 
sequel to that of Clarke.’ We are in disagreement 
with Clarke’s results for a strong shock. All of his 
velocity and temperature profiles are continuous. 
I n  contrast we find that for sufficiently strong shocks 
an imbedded adiabatic shock always appears, and 

similar discrepancy exists for weak shocks when the 
initial gas temperature is sufficiently low. In  this 
case also a discontinuity corresponding to an ini- 
bedded adiabatic shock appears. 

The effects of viscosity and heat conduction on 
shock thickness and structure have already been 
studied cxtensively. The early work of Taylor’ 
and of Becker3 establishes the analytic pattern of 
attack and the character of the profiles. The mono- 
graphs by Hayes4 and Lighthill’ are each definitive 
treatments of the subject and provide a large 
number of references to allied work. 

L rather profound changes in the profiles arise. A 

J. F. Clarke, I’hys. Fluids 5, 134T (1962). 
* G. I. Taylor, Pror. Rev. Sor. (London) A84, 371 (1910). 
3 It. Ik.c.ltcr, %. Physik 8; 321 (1922). Also SACA ThI 505, 

506 (1929). 
4 W. 11. r-I:l,,.cs, Gmrlpat t i ic  Disconfir( ctil ies, Princeton 

Aeronautic:il Paperback So. 3 (Princeton I-niversity Press, 
I’rinreton, ?;tw Jersey, 1960). 

M. J. Lighthill, in Sicroeys in Mechanics, G .  I .  Taylor, 
A n n i z ~ s u r q  T’oluvre (Cambridge UniversitT- Press, London, 
1956). p. 250. 

rhodynamic studies of the effects of radiative 
energy flux are much more rare. Certainly, the gas 
temperatures encountered by practicing aerody- 
namicists have only recently become large enough to 
produce significant radiative interchange. Astro- 
physicists, on the other hand, have long been con- 
cerned with the contribution of radiation to the 
balance of momentum and energy in the interior of 
stars, but the temperatures encountered there are 
so great that the basic formulation of the problem 
is considerably different. The paper by Sen and 
Guess‘ treats the effect of radiation on shock 
structure, but is limited in application, since it treats 
only cases for which the absorption coefficient is 
large. 

Alttempts to analyze radiation-resisted shock 
waves in more general terms appear to have been 
initiated first by Prokof’ev7 and by Clarke. Differ- 
ences in the degree of complication of the gas model 
exist in the two papers but otherwise the analyses 
are similar in execution. In  both cases, however, 
the discontinuous nature of the flow variable was 
not given adequate treatment. The present work was 
undertaken in an attempt to rectify the obvious 
mistakes in these papers. Two methods of attack 
were used: one based on a straightforward numerical 
study of the defining equations; one based on analyti- 
cal expansion procedures. At the time our first 
calculations were being carried out on an IBM 7090, 
Professor R. Goulard called to our attention a paper 
by Zel’dovich’ in which the work of Prokof’ev is 

H. I<. Sen and A. \T. Guess, I’hys. Ilrv. 108, 560 (1 ! )5 i \ .  
V. A. l’rokof’ev, Uch. Zap. 1Zosk. Gos. Cniv. 172, 79 

(1!)52). 
8 1:~. 13. Zcxl‘dovich, Sovirt Phys.-JICTI’ 5, !I19 (1!)57). 
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discussed. The paper by Zel'dovich is primarily 
concerned with a proof of the existence of dis- 
continuities for extreme cases but the methods 
used are adaptable to  quantitative procedures. 
Parallelism also exists between our expansion pro- 
cedures and approximate methods given in a paper 
by R a i ~ e r . ~  In retrospect, i t  thus appears that 
some duplication of effort occurred. In  this presenta- 
tion we have, however, empahsized the portions of 
our investigations that are new. The results include 
calculations for a complete range of parameters, 
analytical development of the expansion procedures, 
and a study of the uniqueness of the solutions and 
the monotonic character of the velocity profiles. 

BASIC EQUATIONS 

We consider the one-dimensional, steady flow of a 
gas with special regard for the effect of thermal 
radiation. I n  the absence of heat conductivity and 
viscosity, the conservation relations for mass, 
momentum, and energy become, respectively, 

(IC) 
dh 
dx dx dx p u -  - u@ -t qr = 0, 

where p is pressure, p is density, u is gas velocity, 
h is specific enthalpy, and qr  is radiative heat flux. 
The contributions of radiative effects to  pressure 
and enthalpy have been ignored. 

Integration of Eqs. (1) yields 

w = r, ( 2 4  

(2b) 

(2 c) 

r u + p  = P = rc,, 

r(h + 32) + qr = E = rc,, 
where r, P, E, cl, and cz are constants of integration. 

If subscripts 1 and 2 are used to  denote, re- 
spectively, conditions at x = - m and x = + m, 

we have 

(34 

(3b) 

(3c) 
These latter relations are, in fact, the Rankine- 
Hugoniot conditions that are satisfied in passage 
through a shock wave. 

The simplifying assumption that the gas is a 

r = plul = p2u2, 

P = PlUT + p1 = P 2 d  + p z ,  

E = P1ul(hl + $ U T )  = Pzuz(h2 + id). 

0 Iu. P. Raizer, Soviet Phys.-JETP 5, 1232 (1957). 

perfect one does not modify essentially the topology 
of the shock structure. We therefore introduce the 
relations 

(4) 
p = RpT, 

R = C, - c., 

h = c,T, 

y = c,/c,,, 
where R is the gas constant and y the ratio of 
specific heats at constant pressure and volume, is 
also a constant. Equations (2b) and (2c) then 
reduce to 

RT = (cl - U ) U ,  (5%) 

The appropriate expression for radiative flux in 
an absorbing and emitting gray gas is best expressed 
as a function of the dimensionless distance 9 de- 
fined by 

where a(x) is the local absorption coefficient; see 
e.g., K0urganoff.l' One has 

qr(s> = 2 u ~ * ( s ~ )  sgn (7 - t l l )~ , (~s  - sl I> dtl, , (7) 
- m  

where u is the Stefan-Boltzmann constant and the 
function E, (7) is the integro-exponential function 
of order 2. It may also be noted, parenthetically, 
that qr is defined so that flux is positive when the 
flow of energy is in the positive x or direction; the 
sign terminology is thus opposite to the convention 
employed by astrophysicists. 

A final approximation is now made by writing 

E,(tl) z me-"", (8) 

where m and n are chosen by somewhat arbitrarily 
imposed fitting techniques. Vincenti and Baldwin" 
have proposed the values 

m = In2 , n = 1.562, (9 ) 

which follow from imposing the requirements that 
the solution be exact in the Rosseland limit of 
strong absorption and that the approximate ex- 
pression in Eq. (8) be a least square fit to Ez(7) .  
Here, we shall introduce the new variable .$', where 

E = ntl (10) 

10 V. Kourganoff, Basic Methods i r l  l'ransfer Problems 

11 W. G. Vincenti and B. S. Baldwin, Jr., J. Fluid Mech. 12, 
(Clarendon Press, Oxford, England, 1952). 

419 (1962). 
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so that no explicit dependence on n will appear in 
the kernel function of the governing integral equa- 
tion; see Eq. (13) below. Then the results in terms 
of E will apply for any choice of the constants m 
and n in Eq. (8). 

with E as independent variable. Setting, first, 
Eqiiaiioiia (5%) and (5b) are EG'ii to  bc recast 

?)(E) = u(:c)/cL; (1 1) 

(124 

we have 

I' = ( C f / R ) ( V  - t?), 

./-: [ v ( f l )  - vz(tl)14 sgn (5 - El)e-"-"' d t i .  (12b) 

Equations (12a) and (12b) correspond precisely 
to Clarke's idealization of the shock structure 
problem and are cast in a terminology easily related 
to his. Clarke furthermore sets [32m(y - l)ac:]/ 
[ r (y + l)R'] = C but for convenience we introduce 
K(=C/n) .  Formal simplification of Eq. (12b) is 
also achieved through introduction of the following: 

. 

u,  = UI/CI, u p  = UZ/CI. 

The Rankine-Hugoniot relations then permit us to 
write (12b) as 

- (VI - v)(v - u,) 

= 1, (v - v2)'sgn (E  - fl)e-lE-tL1 df,  f (13) 
8 --m 

Equation (13) is the governing integral equation 
that must be solved. 

Two speeds of sound play important roles in the 
analysis of wave structure, namely, the isothermal 
and isentropic speeds a, and as. We have the 
defining relations 

a: = RT = p / p ,  at = ya:, (14) 

when 

From Eq. (15b) it follows that uI 2 a, 2 uz so 
that at some value of 4 the shock velocity takes on 
the value a.. We arbitrarily fix this position a t  E = 0. 

Reduction to Differential Equation 

Mathematical analysis of Eq. (13) must cope 
with a t  least three major difficulties. First, the 
nonlinearity prevents straightforward use of many 
standard techniques of solution; second, the length 
of the region of integration being of infinite extent 
the equation must be classified as a singular one 
which again precludes access to some methods 
involving mean value relations; finaiiy, the smooth- 
ing effect of the integration in the right member 
transforms discontinuous functions into continuous 
functions. We know, for example, that (u,  - v )  (u - v 2 )  
must be continuous since i t  is proportional to 
radiative flux, but we have no a priori knowledge 
that (u - v')' ,  or v ,  undergoes no discontinuity. 
We must, in fact, leave the continuity of these 
latter functions open to question since the gas is 
assumed inviscid and the absence of heat con- 
ductivity leaves the continuity of (v - v')' aT' 
in doubt. 

Subsequent results will show that discontinuities 
do occur corresponding to imbedded inviscid shocks. 
For that reason i t  is expedient to introduce a 
continuous dependent variable in place of v .  At 
the same time a proper choice of the variable to be 
used leads to a simple parametric representation 
for all possible imbedded shocks. The variable @(E) 
is therefore introduced where 

e(t) = [.YAY + 1) - 4*. (16) 

Since S ( t )  = t ( v ,  - up)' - (u ,  - v ) ( u  - v Z ) ,  the 
continuity of e ( [ )  is established. The zero value of f 
has been set so that 

f > 0; 
assuming that v ( f )  is monotonic. Hence Eq. (16) 

u > Y/(Y + 11, f < 0; v < YAY + 11, 
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FIG. 1. The functions F(  e )  and G( e).  

Equation (18) can be replaced by a differential 
form. Taking derivatives with respect to .$, we get 
the following relations: 

where F(8)  is defined as in Eq. (18b). Equation (19e) 
is the desired differential equation. An alternative 
form with which we shall be directly concerned is 

where 

G(0) = F(0) - dB/d.$. 

It is important to remark that G(B), defined in 
Eq. (20b)' is also a continuous function of e and .$. 
That  this is so, follows directly from Eq. (19a) sincc 
G is given by the integral term in the right niembcr 
which is everywhere continuous. G(0) has two 
branches, G,(O) and Gb(0), corresponding to the two 
branches of F(0) .  The subscripts a and b are used 

to denote conditions ahead of and behind the shock 
midpoint a t  [ = 0. 

The boundary Conditions associated with G(e) 
can be deduced from Eqs. (19c) and (20b) using the 
fact that derivatives with respect to .$ are zero a t  

are at .$ = - : 
the end poi!?ts ([ = rt m >. T?F bo!!nd.ry conditions 

e = e-, G = F,(e,), (2Oc) 

e = ern, G = Fb(ern). (20d) 

a t  .$ = +a: 

Since G(0) starts out in the a branch a t  .$ = - a,, 
and ends up in the b branch a t  f = + a, a transition 
from one branch to the other must occur a t  some 
intermediate point. Since G and e are each con- 
tinuous functions of .$, and hence G(0) continuous, 
the transition from the a to the b branch must 
occur a t  a point where G,(O) equals Gb(8). It can 
be shown that the previous choice of the zero point 
on the .$ scale corresponds to the point where G,(e) 
equals Gb(0). 

The integrations to get the two branches of G(0) 
are conveniently started from the extreme points 
corresponding to ( = fa. Once the values of 
G,(O) and Gb(0) are known, the quantity dO/d[ 
can be evaluated from Eq. (20b) and t$ result 
integrated to obtain 0 as a function of .$. The velocity 
profile can then be found by substitution in Eq. (17). 
The results froin the numerical integration for G(0) 
in several representative cases are shown in 
Fig. 1. The value K' appearing in the labels is 
defined as K' = 2d5( -y  + l)'82/-y3(y - 1). Its 
significance will be developed in more detail in a 
later section. 

Clarke's solution can be paraphrased by dis- 
cussing it in terms of the present variables instead 
of the ones he actually used. Since his velocity 
profiles are continuous, the transition from the a 
to tlie b branch is made a t  e = 0 [see Eq. (17)]. 
For the case shown in the upper left plot of Fig. 1, 
Clarke's solution would correspond to continuing 
the G, and Gb curves beyond the point of inter- 
section, all the may to 6' = 0. Since G. is not equal 
to G, a t  0 = 0 for this case, the condition that G(e) 
must be continuous is violated by his solution. 
In  the special cases where G,(O) is equal to Gb(0) 
a t  0 = 0 (the riglit-liand plots in Fig. 1) Clarke's 
solution is correct. 

Results f rom numerical integration. Tlie curves 
in Fig. 1 were drawn from calculations and integra- 
tions carried out on an electronic computer. In  all 
cases the value y = $ was used, rather than a smaller 
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number, in order to illustrate the variations better. 
Other constant values of y would lead to qualitatively 
similar results. The parameter 8, appearing in the 
upper two plots of Fig. 1 is the value of 8 where 
F,(O) has a maximum and can be expressed in terms 
of y by the relation 8, = (y - 1)’/4(y + 1)’. 

Figure 2 shows the details of the profiles as func- 

profiles: The dimensionless velocity v( = u / c , ) ,  along 
with the dimensionless temperature function p and 

tiuiis of l .  E d  of the i ihe 3iibphts C G ~ I ~ Z L ~ I I S  t h r ~  

tile fiux luiiciiuii iV1iei-e 

p = RY1/c’ 1 = 21 - 2,  (214 

Nine combinations of parameters were chosen in 
order to give representative variations of predicted 
shapes. The values 8, = 0.002, 0.025, and 0.100 
correspond, respectively, to a weak shock, a wave 
of intermediate strength, and a strong shock. As 
will be explained shortly, the value K = ($&)IC’ 
determines roughly the dividing line between dis- 
continuous and continuous profiles, when continuity 

is not precluded by a large value of 8,. Accordingly, 
K is expressed in units of this particular value and 
Z</K’ is given small, intermediate, and large values. 
Radiative effects are necessarily small when IC/K’<<l. 

It follows from the definition of 4,  Eqs. (10) and 
( G ) ,  that E = 1.0 corresponds roughly to a distance 
of one local radiation mean free path length. If the 
tci~ipcrnture :~ories appreciab!y thmug!~ the wave, 
the radiation mean free path varies, and the pro- 
files in terms of actual physical distances are dis- 

limit our considerations here to the reduced variable 
and thus are able to avoid specifying the de- 

dependence of the absorption coefficient on tempera- 
ture. 

In  the top row, the strong shock differs only 
slightly from a classical inviscid shock when radia- 
tion is weak. The small variations in v and T that 
do occur die out in essentially one radiation mean 
free path length ahead of and behind the imbedded 
inviscid shock. The radiative flux 4 is symmetric 
about I = 0 and goes to zero in the regions where 
v and T become constant. As the radiation param- 
eter K is increased, the variations in v and 5? ahead 

tor tcd fram the s!lapes g i w l  in Fig. 8. w e  shd! 
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of and behind the imbedded shock increase in 
magnitude. The values of Q also increase and an 
asymmetry develops. For large K the variations 
ahead extend over many radiation mean free path 
lengths, and the variations behind become com- 
pressed into a small fraction of a radiation path 
length. In  all three subplots of the top row, there 
is a nonzero radiative flux q through the imbedded 
shock. Nevertheless, the discontinuities correspond 
to adiabatic inviscid shocks because there can be no 
radiation from nor absorption in a gas layer of 
vanishing thickness. 

The results for a n  intermediate shock strength in 
the middle row of Fig. 2 reveal trends similar to  
those for a strong shock. I n  this case the tempera- 
ture profile develops a small peak behind the im- 
bedded shock. At large K ,  the profiles become 
contiiiuous and are in agreement with the results of 
Clarke. 

The bottom row gives results for a weak wave. 
The trends with increasing K for the forward part 
of the profiles are similar to those for the previous 
cases. However, the rear part behaves differently in 
that i t  also becomes greatly dispersed for large K 
rather than being compressed as is the case for the 
stronger waves. An explanation of this differciice 
is arrived at by means of an expansion of the 
solution for large K ,  derived in the next section. 
In  a weak wave, the transition from discontinuous 
to continuous profiles occurs at a smaller value 
of K/K'  than for stronger waves. The tenipera- 
ture maximum within the wave, which appears for 
stronger shocks, is absent in the weak waves. 

It should be noted that Q = (e, - e) /@,  is 
normalized through division by the strength of the 
wave, e, = + ( v ,  - v,)'. As a result, the relative 
magnitudes of q in different subplots have significance 
only when e, is held fixed. We see that for a wave 
of fixed strength, the radiative flux Q does not increase 
indefinitely with increasing K .  Instead, the peak 
value levels off and is nearly constant when li 
exceeds K'. 

FURTHER ANALYTICAL CONSIDERATIONS 

Since the conclusions in the previous section are 
to  some extent dependent on the accuracy of 
numerical procedures, it is of interest to determine 
whether any general information can be inferred 
analytically. It is possible to show that discon- 
tinuities must occur in the profiles when the shock 
is sufficiently strong and also when the radiation is 
sufficiently weak. By means of expansion procedures 
a closed-form solution can be found for the case of 

weak radiation, and an interesting singular pertur- 
bation effect is found in the Rosseland limit of 
strong absorption. 

Values of the Parameters at which 
Discontinuities Must Occur 

Assuming that u ( f )  decreases monotonically (see 
Appendix), we infer from Eq. (17) 

dO/df IO, t 0, (224 

dO/df 2 0 ,  f > 0. (22b) 

It then follows from Eq. (20b) that 

Ga(6) 2 Fa(e), Gb(e) 5 Fb(e)* (23a) 

Also, since 8, > 8 if v is monotonic, Eq. (20a) indi- 
cates 

dG,(O)/dO < 0, dGb(e)/de > 0. (23b) 

Thus both branches of G(0) lie within the branches 
of F ( 0 )  and are monotonic oppositely. It follows 
that G. and G, cannot intersect a t  more than one 
point. Since the transition from G. to Gb must occur 
at G, equal to G,, the solution is unique, if it exists. 

It is not necessary to carry out the integration in 
order to prove that the velocity profile is dis- 
continuous in many cases. Consider, first, the case 
typified by thc upper left plot in Fig. 1. Here 

[see Eq. (18b)l. Since G,(O) lies always below F(O) ,  
the branch G.(O) must intersect Gb(0) before 0 
reaches zero. 

It is also possible to prove that the velocity 
profile cannot be continuous if K is sufficiently small. 
To show this assume continuity and expand Eqs. 
(20a, b) about 0 = 0 as follows: 

e, > 48, = [(Y - I ) / (Y + 1)12 and Fb(em) 5 F(O)  

F,(e) = F(O) - cef + $ .  , (244 

Fb(e) = F(0) + cf+ + . ' * ( 2 W  

c = [Y3(Y - 1)Kl/(Y + u7. (25) 

where 

Since the two branches of G(e) lie between the two 
branches of F(O), it follows that 

G,(e) = F(O) - AB* + . . . , 
GJO) = F(0) + BOf + * * -  , 

(264 

(26b) 
where 

0 < s ,  t 5 3, A , B  > 0. 

Elimination of d e / d f  from Eqs. (20a, b) and sub- 
stitution of Eqs. (24) and (25) leads to  the results 

& . = t = '  2, B = A ,  

1 

4 
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and A must satisfy the equation 

A’ - C A  + 28, = 0, 

or 

A = $c + [(+c)’ - 2e,]+. 

$c > 21e, 

A real value of -4 will be obtained only if 

01‘ 

K > p’(y + i)’ei1/[y3(y - 111 = K’. (27) 

We conclude that for K < K’, a continuous solution 
does not exist. 

The preceding discussion enables us to liniit 
drastically the range of parameters for which con- 
tinuous velocity profiles may possibly occur. The 
shaded regions in Fig. 3 correspond to cases for 
which a discontinuous profile m i s t  occur; that is, 
when K < K’ or 

By a more detailed investigation of the solution near 
e = 0, i t  can be shown that discontinuous profiles 
must occur for K < (% 1/Z)K’ when 0, is sufficiently 
small. Also, by establishing a closed-form lower 
bound on G, and an upper bound on Gb, discon- 
tinuous behavior is seen to persist for values of e, 
somewhat less than 48,. Thus the shaded areas in 
Fig. 3 could be extended further into the unshaded 
area than is indicated in the figure. The exact posi- 
tions of the dividing lines for values of the param- 
eters leading to  discontinuous or continuous pro- 
files have not been determined. 

* 

\ 

Closed-Form Solutions for Limiting Cases 
The method of solution indicated in the previous 

sections can be further illustrated by closed-form 
analysis of the limiting cases corresponding to  
K << K’ and K >> K’. For this purpose, it is con- 
venient to introduce the following functions to  
replace F(0)  and G(0): 

? 

g(e) = G(e)jIc.  (29) 

In  contrast to the behavior of F(O), the function f(0) 
remains finite and nonzero for limiting values of I<. 
The function g(e )  also has these properties since, 
as previously noted, the two branches of G(0) lie 
between the two branches of F ( e )  in the region of 
jnt,erest, see Eg. (23). Since f and g differ from F 

FIG. 3 .  Values of the parameters a t  which discontinuous 
profiles must occur. 

and G only by the niultiplicative constant K ,  all of 
the foregoing equations and properties of the latter 
functions can be easily applied in terms of f and g. 
The governing Eqs. (20a, b) can be written as 

d0 dg 
d[ d0  

IC - - = e, - e ,  (3Oa) 

Combination of these yields the single equation 

K’(f - g) dg/de = 0, - e (3 1) 

for the unknown function g(0). The boundary con- 
ditions are, from Eqs. ( ~ O C ,  d) 

It may be recalled that the subscript a refers to the 
branch of sgn ([)et corresponding to  5‘ < 0 and the 
subscript b refers to [ > 0. 

Expansion for small K .  Specializing to the case 
of small K ,  one concludes from Eq. (31) that the 
magnitude of dg/d8 is very large, because the 
magnitudes of the other quantities appearing in that 
equation do not go to infinity or zero as K goes to 
zero. Since the slopes of ga(B) and &,(e) are very 
steep, they must intersect a t  a value of 8 near the 
starting value e, (see Fig. 1, lower left). Then to 
lowest order in K ,  f (0)  E f(0,) and Eq. (31) can be 
written as 

To the lowest order in K ,  the last term on the right 
can be neglected. A systematic expansion to any 
order in K follows from substitution of the previous 
approximation in the right side of Eq. (33) and 
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integration of the resulting equation. We find 

g,(e) = f.(e,) + (e, - Wzi + WO, 
g,(e) = fb(e,) - (e, - e),/zi + o(z<). 

(344 

(34b) 

Once g,(e) and gb(e) are known, 0 as a fuiiction of 
f follows from Eq. (30a). Neglecting terms of order 
Zi in Eqs. (34s, b), we obtain 

(de/df). = --(em - e) + O(Zi2), (3%) 

(de/d&, = (e, - e) + o(zP). (35b) 

It has previously been shown that = 0 a t  0 = Bo, 
the point of intersection of ga and gb. From Eqs. 
(34a, b), eo is given by 

eo = e, - +zqfb(e,) - f.(e,)i + o(zc2). 
Integration of Eqs. (3.523, b) leads to 

and the solution for e([) is 

, g = , g  - -  ;zi[fb(e,) - f , ( e , ) i P  + O(K') .  ( ~ G I  

The dimensionless velocity, temperature, and 
flux profiles are now found by substitution from 
Eq. (36) into Eqs. (17) and (21a, b). The results are 

. (sgn f )e -  " + O(K') , (37a) 

.[e2 - (sgn()8:Je-"' + O(K2),  (37b) 

I n  terms of the initial and final values of velocity 
and temperature, these become 

Equations (37) and (38) apply for waves of any 
strength when K is sufficiently small. For K = 0, 
we have an adiabatic inviscid shock. As K increases, 
for a fixed strength of the over-all wave, the im- 
bedded adiabatic inviscid shock strength is reduced 
and the transitions to the initial and final conditions 
follow exponential variations. The results for Zi = 
0.213 K' plotted in Fig. 2 are given quite accurately 
by Eqs. (37). These equations indicate that for small 
K ,  the over-all shock thickness is of the order of the 
sum of the radiation mean free paths in the regions 
ahead of and behind the inner shock. 

In  the expansion for K >> Zi', three distinct cases 
arise, depending on the value of 8, relative to the 
parameter 0," = (y - 1)'/4(y + 1)'. 

Case Z, large Zi, weak shock (e, < e,). Equation 
(31) shows that in the limit as Zi goes to infinity, 
either g = f(0) or dg/dO = 0. The choice between 
these possibilities is made by imposing the require- 
ments that g. and gb be monotonic oppositely and 
lie between the two branches of f(0).  For the present 
case it can be established that g --$ f(0) as K --f 03 , 
and Eq. (31) is rewritten as 

To lowest order in Z<-', the last term on the right 
can be neglected. Higher approximations can be 
found by substituting the previous approximation 
in the right side and integrating the result. By this 
process, we obtain 

As in the case of small K ,  the solution in terms of 
e can be converted to a solution in terms of E by the 
use of Eq. (30a). The results are 

These integrals start a t  e = 0, for sufficiently large 
K ,  because the two branches of g(0) intersect a t  
0 = 0. The appearance of the factor K in Eqs. 
(41a, b) indicates that, for large K ,  the radiation 
resisted shock thickness is proportional to K and 
hence is large compared to the radiation mean free 
path. The results from these equations were com- 
pared with the numerical results of Fig. 2 for 

4 
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0, =: 0.002 Zi = 5.303 I<’ and were found to provide 
a very good approximation at that value of K.  

Case 11, large I<, intermediate shock strength 
(e, < e,  < 48,). The solution for f,(O) in this case 
is the same as for the previous one. The solution 
for f b ( e )  involves three separate expansions for small, 
intermediate, and iarge 8. The results ale i-iziher 
complicated and will not be given here. However, i t  
is of interest to  note that calculations based on the 
expansion agree quite cioseiy with tilose I’ioiii the 
machine computations a t  a value of K = 5.305 K’ 
corresponding to the middle right plot in Fig. 2. 

Case I I I ,  large K ,  strong shock (40,” < Om) .  Figure 
4 is a plot of f and g obtained numerically for 
y = 5, 0,  = 0.1, Z< = 5.305 K’, corresponding to  
the upper right plot in Fig. 2. It is apparent that 
the first term on the right in Eq. (40) provides a 
good approximation for g,(e). Equation (4la) is 
also accurate a t  these values of the parameters. 
However the choice &,(e) --+ fL(e,) must be made 
here rather than g b ( B )  -+ fb(0). The appropriate 
rearraiigenient of Eq. (31) for expansion to higher 
order is 

To lowest order in I C ’ ,  the expressions for (($)are 

whcrt. 

e(, = ( 0 2  - 2e,!>)?. 

From the factors in front of the integrals, it follows 
that the forward part of the wave is greatly dispersed 
at large K ,  while the rearward part is compressed 
into a small fraction of a radiation mean free path. 
As shown in Fig. 4, the two branches of g ( 0 )  intersect 
a t  e = e,, # 0. Consequently there is an imbedded 
adiabatic inviscid shock. This is followed by a region 
of rapid velocity and temperature variation as in 
the upper right plot in Fig. 2. The latter variation, 
taken together with the adiabatic shock, can be 
interpreted as an imbedded isothermal shock, in 
the limit of infinite I<. The figure indicates that the 
temperatures immediately ahead of and behind the 
combined regions are equal. 

Relationship of the Limit K ---f w to the 
Rosseland Approximation 

I n  the final section we provide additional details 
concerning the interrelation between the limiting 
form of the exact solutions when K increases in- 
definitely and the Rosseland approximation wherein 
the radiative heat transfer process is expressed in 
terms of a thermal heat conduction equation. The 
latter approximation can be arrived at by taking 
T4(q1) in Eq. (7) to be a slowly varying function 
[;.e., each derivative of T4(7,) is assumed negligible 
compared to the derivatives of lower order, in- 
cluding T4(7,) itself]. After a partial integration Eq. 
(7) can be written 

Since T‘(7) is slowly varying, the integral is ap- 
proximated as follows 

This expression for the radiative heat flux is of the 
same form as Fourier’s law for thermal heat con- 
duction, q = -k(dT/d.r) .  Thus the Rosseland 
approximation leads to the definition of an equiva- 
lent heat conduction coefficient Ii, such that 

If the approximation 
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is used in Eq. (7), the same result is obtained as 
long as m is taken equal to anz. 

Use of Eq. (46) at  the outset in place of Eq. (7) 
leads to 

(vl - V)(V - v,) = K(u - V')'(d/dt)(v - v') (47) 

in place of the integral Eq. (13). It is to be noted 
that this derivation is based on the assumption 
that T4 and hence (v - v2)4 does not vary ap- 
preciably in one radiation mean free path. 

Since t: is essentially in units of the radiation mean 
free path, the &wise gradient of (v - v ' ) ~  must be 
small. But  Eq. (47) can be recast in the form 

where c3 is O:/K' and from Eq. (27) is fixed for a 
known value of y. For sufficiently large values of 
K/K'  the magnitude of the right term can be made 
arbitrarily small and the derivative term on the 
left is consequently small. This is the basis for the 
statement that the Rosseland limit corresponds to 
K-+ a. 

These remarks imply that the profiles in the right 
column of Pig. 2 should be consistent with results 
obtained from the Rosseland approximation. Our 
results indicate, however, that this consistency is 
strictly true only in the case of weak waves and that 
a singular perturbation effect appears in the limiting 
condition for intermediate and strong shocks. The 
singular behavior is exhibited in the internal struc- 
ture of the imbedded isothermal shocks discussed in 
the preceding section and pictured in the right 
column of Fig. 2. The Rosseland approximation 
leads to Becker's solution for a conducting shock 
in the absence of radiation and for zero viscosity. 
This solution includes an imbedded isothermal shock 
as in the present solution for large K ,  but with no 
internal structure. It is not surprising that the 
internal structure indicated by the integral equation 
is lost in the Rosseland approximation, since the 
simplification leading to the approximation requires 
that v and T be nearly constant in one radiation 
mean free path, whereas the internal structure based 
on the refined analysis contains an appreciable 
variation in a small fraction of a radiation mean 
free path. It is interesting to note that for a strong 
shock there is a temperature peak considerably 
larger than that which would occur in the absence of 
radiation, see the upper right plot in Fig. 2. This 

feature is missed entirely by the Rosseland ap- 
proximation. 

APPENDIX: UNIQUENESS OF SOLUTION 

In the text it was assumed that the velocity 
decreases monotonically from the initial to the 
final value. It will be shown here that, without 
this restriction, the solution is not unique. However, 
it will be seen that the nonmonotonic velocity 
profiles entail a violation of the second law of 
thermodynamics, and must therefore be excluded. 

Equations (20a, b) can be derived from Eq. (13) 
without assuming v monotonic, provided that the 
sign of rt8' in equations (17) and (18b) is not 
specified relative to the sign of t. In  making this 
change, we shall a t  the same time express the 
parameters y, v,, and v 2  in terms of the quantities 
0, = (y - 1)'/4(y + l)', 0, = +(u, - v,)', pre- 
viously defined. Then Eqs. (17) and (18b) are 
replaced by 

(AI) u = 3 + e2 =t e', 
zqe) = ;E([$ - (e: * ef)']'. (A2) * 

9 The requirements that 0 and G be continuous func- 
tions of F, and hence G(0) continuous, remain intact. 

Equations (20a, b) combine to form the equation 

(A3) ( F  - G)  dG/dB = 8, - 0 

for the unknown function G(0). There are two 
branches of G(8) corresponding to the two branches 
of F(O), which in turn correspond to the two branches 
of &e+, appearing in Eqs. (Al)  and (A2). The 
boundary conditions associated with Eq. (A3) are 
at .$ = - a :  

u = o1 = 5 + e t  + e f ,  e = e,, G = Fa(&); ( ~ 4 )  

V = U z = i  + e2 - e;, e = e,, G = Fb(em); ( ~ 5 )  

a t  E = + m :  

where the subscript a corresponds to ( + O f )  and b 
corresponds to ( - e f )  in the expression for F(0) .  

Figure 5 is a sketch of the integral curves, G(O), 
for a typical case. That the starting point, 1, and 
final point, 2, are saddle points follows from a study 
of equation (A3) in the neighborhood of these points. 
Equation (A3) shows immediately that the integral 
curves are monotonic unless they cross the line 
e = e, or unless they cross the branch of F ( 0 )  
with which they are associated. A brief study 
indicates that an integral curve leaving point 1 
or point 2 cannot make such a crossing. Thus each 
of the curves G,, G,, Gb, Gd, etc. is monotonic in 
the range where it is defined. Also, each lies always 
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FIG. 5. The integral curves G( e). 

on the same side of the F curve that it intersects 
a t  1 or 2. 

Once the direction of increasing G is known for 
each curve, the direction of increasing [ is determined 
by Eq. (20a), rewritten as 

(AG) dG/d[ = 8, - e. 
The arrows in Fig. 5 have been drawn to correspond 

We are interested in finding a solution curve 
from point 1 ( 5  = - m )  to  point 2 ( E  = +a). The 
value of must increase along this path (the di- 
rection of the arrows). There is the requirement 
that G(0) be continuous, but the desired solution 
curve can transfer from one integral curve to  
another at a point where they intersect. We can 
conclude that G, does not intersect any of the other 
lettered curves, except possibly Gel on which the 
arrow is backwards. The arrows are also backwards 
on G, and G i .  The only remaining possibility is to  
start out on G,. A possible intersection of G. with G, 
is not of interest because of the orientation of the 
arrow on G,. If we transfer from G. to G, at 0 = e,, 
where the two are equal, and proceed along G, 
to point 2, none of the required conditions is vio- 
lated. Since G. and G, are monotonic and hence 
can intersect a t  only one point, the solution is 
unique, if we can exclude multiple transfers in- 
volving integral curves that do not pass through 
pointJs 1 or 2. 

+ to  increasing E. 

Consider the expansion shock represented by the 
path from point 2 along Gel a transfer to Gt at the 
point of intersection, and from there to point 1 along 
G,. There are no conditions arising from the integral 
There are no conditions arising from the integral 
Eq. (13) that would exclude such a solution. But the 
transition from G, to Gf(-Of changes to  +ef) 
corresponds to an  irnbedcied iiiviscid adiakatic 
expansion shock, and is excluded by an  appeal t o  
t,he second law of thermodynamics. Thus our system 
of flow equations must be txipplementei! by B 

statement of the second law, as in classical inviscid 
flow theory. 

Returning to the over-all compression wave 
(initial state a t  point l ) ,  similar reasoning shows 
that a velocity profile involving multiple shocks is 
a solution of the integral Eq. (13). For example, 
consider the path starting along G,, a transfer to 
G; at the point of intersection, transfer to  G:, 
transfer to G,, and thence along G, to  point 2. No 
conditions arising from the integral equation are 
violated by this solution. But the transfer from 
G; to G: (-e4 changes to +Of)  violates the second 
law. In  any solution involving multiple transfers, 
every other transfer must correspond to an  imbedded 
inviscid expansion shock. To show this i t  is only 
necessary to  establish that distinct integral curves 
associated with the same branch of F ( 8 )  do not 
intersect, which follows from a comparison of 
the slopes indicated by equation (A3). The last 
statement should be qualified slightly in that such 
intersections can occur a t  the node located at 
e = 0. But a little reflection reveals that this does 
not interfere with the final conclusion that the 
solution along G. and G, is unique, if imbedded 
expansion shocks are not permitted. 

Once all other solutions are excluded and E is set 
equal to zero a t  v = y/(y + 1) = $ + e;, it follows 
from Eq. (Al) that the sign of = t o *  coincides with 
the sign of E .  Since 0 decreases in the transit along 
G, (in the direction of the arrow) and increases 
along G,, i t  follows [from equation (Al)] that v is 
monotonic. Assuming u monotonic a t  the outset 
also led to a unique solution. We therefore conclude 
that this restriction can be interpreted as an  im- 
position of the second law of thermodynamics. 


